
This lemma was used in my old clunky proof of chi squared tests from level 6 so it has be moved to 
this section. 

Theorem: for a fixed vector a, if a sequence of random vectors 𝑌𝑛 converges in distribution to a 
random vector 𝑌, then 𝑎. 𝑌𝑛 converges in distribution to 𝑎. 𝑌, and that if 𝑎. 𝑌𝑛 converges in distribution 
to 𝑎. 𝑌 for all vectors a, then 𝑌𝑛 converges in distribution to 𝑌. The first part is because a linear 
combination of the components of the 𝑌𝑛 converges in distribution to the linear combination of the 
components of 𝑌 since 𝑌𝑛 converges to 𝑌. The other direction is the hard part: Note that it is not as 
obvious as it seems: Just because each component converges to the right thing does not mean the 
whole thing does, since the components are not independent in general. 

In fact, by having a distribution Y and setting the sequence to be Y, Y, Y,… the above theorem actually 
says that every probability distribution in higher dimensional space is uniquely determined by its 1D 
projections, or that scanning something in every direction determines its structure, which is really 
interesting. (This is for distributions which are part discrete part continuous – which is more than what 
we need – since our characteristic function theory only works for those types of distributions) 

Levels recommended for proof: 6 (A good understanding of all the hard stuff in level 6 stats and 
technical results is expected) 

Proof: 

Lemma: Convergence in distribution implies pointwise convergence of characteristic function 

Proof: 

Suppose we have a sequence of probability distributions 𝑋𝑛 converging in distribution to a probability 

distribution 𝑋. For any ε>0, we can pick a point on the cdf of X with a value strictly less than 𝜀
2

, and 

another point with a value strictly greater than 1 −
𝜀

2
. This is always possible since in the extremes, the 

cdf approaches 0 and 1, so we can find points as close as we want to 0 and 1. Let M be at least the 
maximum absolute value of these points we’ve picked and ensure we pick M such that at M and -M, 
the cdf of X is continuous and does not jump. Then 𝑃(|𝑋| > 𝑀) < 𝜀. But since 𝑋𝑛 converges in 

distribution to 𝑋, the cdfs converge pointwise, so at -M and M where the cdf of X is within 𝜀
2

 of 0 and 1 

respectively, by definition of convergence we can find an N such that for all 𝑋𝑛 with n>N, the cdf of 𝑋𝑛 
at M and -M get as close as we want to the cdf of X at M and -M. Specifically, make it so close that it is 

still within 𝜀
2

 of 0 and 1 respectively. Then we have shown that for any ε>0 there exists M and N such 

that if n>N then 𝑃(|𝑋𝑛| > 𝑀) < 𝜀. 

Now for any ε>0 pick M and 𝑁1 such that if 𝑛 > 𝑁1 we have that 𝑃(|𝑋𝑛| > 𝑀) <
𝜀

4
. Now let 1𝑆 be the 

indicator function of the set S, ie the function that returns 1 for points inside the set S and 0 
everywhere else. Then 𝐸(𝑒𝑖𝑡𝑋𝑛) − 𝐸(𝑒𝑖𝑡𝑋) 

= 𝐸(𝑒𝑖𝑡𝑋𝑛1|𝑋𝑛|≤𝑀 + 𝑒𝑖𝑡𝑋𝑛1|𝑋𝑛|>𝑀) − 𝐸(𝑒𝑖𝑡𝑋1|𝑋|≤𝑀 + 𝑒𝑖𝑡𝑋1|𝑋|>𝑀) 

We simply have that the expectation overall is the expectation when inside a set plus the expectation 
when outside that set, this is obvious. We split this even further to get the following: 

= 𝐸(𝑒𝑖𝑡𝑋𝑛1|𝑋𝑛|≤𝑀) + 𝐸(𝑒𝑖𝑡𝑋𝑛1|𝑋𝑛|>𝑀) − 𝐸(𝑒𝑖𝑡𝑋1|𝑋|≤𝑀) − 𝐸(𝑒𝑖𝑡𝑋1|𝑋|>𝑀) 



Now, recall that we have the triangle inequality for both real numbers and integrals. Since 
expectations are actually defined in terms of integrals, we do have the inequality |E(x)|≤E(|x|) directly 
from the integral inequality. So, we have: 

|𝐸(𝑒𝑖𝑡𝑋𝑛) − 𝐸(𝑒𝑖𝑡𝑋)| 

= |𝐸(𝑒𝑖𝑡𝑋𝑛1|𝑋𝑛|≤𝑀) + 𝐸(𝑒𝑖𝑡𝑋𝑛1|𝑋𝑛|>𝑀) − 𝐸(𝑒𝑖𝑡𝑋1|𝑋|≤𝑀) − 𝐸(𝑒𝑖𝑡𝑋1|𝑋|>𝑀)| 

By what we just did 

≤ |𝐸(𝑒𝑖𝑡𝑋𝑛1|𝑋𝑛|≤𝑀) − 𝐸(𝑒𝑖𝑡𝑋1|𝑋|≤𝑀)| + |𝐸(𝑒𝑖𝑡𝑋𝑛1|𝑋𝑛|>𝑀)| + |𝐸(𝑒𝑖𝑡𝑋1|𝑋|>𝑀)| 

By the normal triangle inequality 

≤ |𝐸(𝑒𝑖𝑡𝑋𝑛1|𝑋𝑛|≤𝑀) − 𝐸(𝑒𝑖𝑡𝑋1|𝑋|≤𝑀)| + 𝐸(|𝑒𝑖𝑡𝑋𝑛|1|𝑋𝑛|>𝑀) + 𝐸(|𝑒𝑖𝑡𝑋|1|𝑋|>𝑀) 

By the triangle inequality for expectations. However, |𝑒𝑖𝑡𝑋𝑛| = |𝑒𝑖𝑡𝑋| = 1 so since this is only when 
|𝑋𝑛| > 𝑀, we have that  

|𝐸(𝑒𝑖𝑡𝑋𝑛) − 𝐸(𝑒𝑖𝑡𝑋)| ≤ |𝐸(𝑒𝑖𝑡𝑋𝑛1|𝑋𝑛|≤𝑀) − 𝐸(𝑒𝑖𝑡𝑋1|𝑋|≤𝑀)| +
𝜀

4
 

Which helps a lot, since the goal is to make this term less than a full epsilon so we have that the 
characteristic functions get as close together as we want so we have the desired result. 

Now, 𝑒𝑖𝑡𝑥 on [-M,M] is a continuous function on a closed bounded interval so it is uniformly 
continuous. Therefore we can find a 𝛿 small enough that on any interval of length at most 𝛿, 𝑒𝑖𝑡𝑥 is 

within a ball in the complex plane of diameter 𝜀
4

, which we can do by considering real and imaginary 

parts separately and making sure they are in an interval of length 𝜀

4√2
, ensuring the whole thing is in a 

square within the circle that we need. Since this 𝛿 works everywhere by uniform continuity, we can 
find a finite partition −𝑀 = 𝑎0 < 𝑎1 < ⋯ < 𝑎𝑚 = 𝑀 where the distance between each x is at most 𝛿. 
We take care to make sure that each a is a point where the cdf is continuous, and this will have the 

property that if  𝑔(𝑥) ≔ 𝑒𝑖𝑡𝑥, then for any x and y between 𝑎𝑗−1 and 𝑎𝑗  we have that |𝑔(𝑥) − 𝑔(𝑦)| <
𝜀

4
. 

In particular, for any 𝜉𝑗  with 𝑎𝑗−1 < 𝜉𝑗 ≤ 𝑎, which I will now pick arbitrarily for each interval j, we have 
that the difference between 𝑐𝑗 ≔ 𝑔(𝜉𝑗) and g(anything else in that interval) is bounded above in 

absolute value by 𝜀
4

. I will now define the simple function 𝑠(𝑥) ≔ ∑ 𝑐𝑗1(𝑎𝑗−1,𝑎𝑗]
𝑚
𝑗=1 , then since |𝑐𝑗| is  1 

since it is equal to 𝑒𝑖∗𝑠𝑡𝑢𝑓𝑓, we have that it is always the case that |𝑔(𝑥) − 𝑠(𝑥)| <
𝜀

4
. Now lets work on 

the |𝐸(𝑒𝑖𝑡𝑋𝑛1|𝑋𝑛|≤𝑀) − 𝐸(𝑒𝑖𝑡𝑋1|𝑋|≤𝑀)| term which we hope to bound by 3𝜀

4
 in order to be done: This 

term is equal to |∫ 𝑔(𝑥)𝑓𝑛(𝑥)𝑑𝑥
𝑀

−𝑀
− ∫ 𝑔(𝑥)𝑓(𝑥)𝑑𝑥

𝑀

−𝑀
| because of the definition of expected value in 

terms of integrals and the definition of g(x) and the fact that the indicator function makes this be on 
the interval [-M,M]. Here 𝑓𝑛 is the pdf of 𝑋𝑛 and f is the pdf of x. I can write the term as 

|∫ (𝑔 − 𝑠)(𝑥)𝑓𝑛(𝑥)𝑑𝑥
𝑀

−𝑀

− ∫ (𝑔 − 𝑠)(𝑥)𝑓(𝑥)𝑑𝑥
𝑀

−𝑀

+ ∫ 𝑠(𝑥)𝑓𝑛(𝑥)𝑑𝑥
𝑀

−𝑀

− ∫ 𝑠(𝑥)𝑓(𝑥)𝑑𝑥
𝑀

−𝑀

| 

Then both versions of the triangle inequality mean that this is 

≤ ∫ |(𝑔 − 𝑠)(𝑥)|𝑓𝑛(𝑥)𝑑𝑥
𝑀

−𝑀

+ ∫ |(𝑔 − 𝑠)(𝑥)|𝑓(𝑥)𝑑𝑥
𝑀

−𝑀

+ |∫ 𝑠(𝑥)𝑓𝑛(𝑥)𝑑𝑥
𝑀

−𝑀

− ∫ 𝑠(𝑥)𝑓(𝑥)𝑑𝑥
𝑀

−𝑀

| 



Since f is positive and real so we can pull it out of the absolute value (this also justifies the inequality 
for expectations in general). Now using the bounds we got earlier we can simplify this even further: 

≤ ∫
𝜀

4
𝑓𝑛(𝑥)𝑑𝑥

𝑀

−𝑀

+ ∫
𝜀

4
𝑓(𝑥)𝑑𝑥

𝑀

−𝑀

+ |∫ 𝑠(𝑥)𝑓𝑛(𝑥)𝑑𝑥
𝑀

−𝑀

− ∫ 𝑠(𝑥)𝑓(𝑥)𝑑𝑥
𝑀

−𝑀

| 

≤
𝜀

4
∫ 𝑓𝑛(𝑥)𝑑𝑥

𝑀

−𝑀

+
𝜀

4
∫ 𝑓(𝑥)𝑑𝑥

𝑀

−𝑀

+ |∫ 𝑠(𝑥)𝑓𝑛(𝑥)𝑑𝑥
𝑀

−𝑀

− ∫ 𝑠(𝑥)𝑓(𝑥)𝑑𝑥
𝑀

−𝑀

| 

≤
𝜀

2
+ |∫ 𝑠(𝑥)𝑓𝑛(𝑥)𝑑𝑥

𝑀

−𝑀

− ∫ 𝑠(𝑥)𝑓(𝑥)𝑑𝑥
𝑀

−𝑀

| 

Since those integrals cannot be greater than 1. So we just have to make sure that 

 |∫ 𝑠(𝑥)𝑓𝑛(𝑥)𝑑𝑥
𝑀

−𝑀
− ∫ 𝑠(𝑥)𝑓(𝑥)𝑑𝑥

𝑀

−𝑀
| ≤

𝜀

4
 

Then we’re done, since we will have that the characteristic function converges for every fixed t and 
therefore converges pointwise. 

To do this, we note that since s is equal to 𝑐𝑗  on each interval (𝑎𝑗−1, 𝑎𝑗), we have that the term in 
question can be written as 

|∑ ∫ 𝑐𝑗𝑓𝑛(𝑥)𝑑𝑥
𝑎𝑗

𝑎𝑗−1

𝑚

𝑗=1

− ∑ ∫ 𝑐𝑗𝑓(𝑥)𝑑𝑥
𝑎𝑗

𝑎𝑗−1

𝑚

𝑗=1

| 

But the integral of 𝑓 and 𝑓𝑛 is the cdf, which I’ll call 𝐹 and 𝐹𝑛 respecively, so the term becomes 

|∑ 𝑐𝑗[𝐹𝑛(𝑎𝑗) − 𝐹𝑛(𝑎𝑗−1)]

𝑚

𝑗=1

− ∑ 𝑐𝑗[𝐹(𝑎𝑗) − 𝐹(𝑎𝑗−1)]

𝑚

𝑗=1

| 

= |∑ 𝑐𝑗 [(𝐹𝑛(𝑎𝑗) − 𝐹𝑛(𝑎𝑗−1)) − (𝐹(𝑎𝑗) − 𝐹(𝑎𝑗−1))]

𝑚

𝑗=1

| 

≤ ∑ |𝑐𝑗 [(𝐹𝑛(𝑎𝑗) − 𝐹𝑛(𝑎𝑗−1)) − (𝐹(𝑎𝑗) − 𝐹(𝑎𝑗−1))]|

𝑚

𝑗=1

 

By the triangle inequality 

= ∑ |[(𝐹𝑛(𝑎𝑗) − 𝐹𝑛(𝑎𝑗−1)) − (𝐹(𝑎𝑗) − 𝐹(𝑎𝑗−1))]|

𝑚

𝑗=1

 

Since |𝑐𝑗| = 1 

≤ ∑[|𝐹𝑛(𝑎𝑗) − 𝐹(𝑎𝑗)| + |𝐹𝑛(𝑎𝑗−1) − 𝐹(𝑎𝑗−1)|]

𝑚

𝑗=1

 

By the triangle inequality. 



Now, since each 𝑎𝑗  is a point where F is continuous, it means 𝐹𝑛 converges to 𝐹 there. So if n is large 

enough 𝐹𝑛(𝑎𝑗) will be within 𝜀

8𝑚
 of 𝐹(𝑎𝑗) if we pick 𝑛 > 𝑁𝑗. Since there are finitely many (m, the number 

of intervals in our partition) 𝑁𝑗’s, simply pick the largest one, then we have that n is large enough so 
that our sum is 

≤ ∑ [
𝜀

8𝑚
+

𝜀

8𝑚
]

𝑚

𝑗=1

= ∑ [
𝜀

4𝑚
]

𝑚

𝑗=1

=
𝜀

4
 

So done (with the lemma). 

Lemma 2: We have the other direction (Characteristic functions determine the distribution and 
convergence in cf implies convergence in distirbution) for random vectors. 

Proof: 

A random vector is defined by a probability density function in ℝ𝑘, ie sets of k real numbers. We define 
the cf of a random vector Y to be a function that takes in a vector t and outputs 𝐸(𝑒𝑖(𝑡.𝑌)). If the space 
is d dimensional, we define 

𝐼𝜀 ≔
1

(2𝜋)𝑑
∫ 𝜙𝑦(𝑡)𝑒−𝜀|𝑡|2

∏
𝑒−𝑖𝑎𝑗𝑡𝑗 − 𝑒−𝑖𝑏𝑗𝑡𝑗

𝑖𝑡𝑗

𝑑

𝑗=1

 

𝑅𝑑

𝑑𝑡 

Where that big scary looking thing just means product. 

=
1

(2𝜋)𝑑
∫ ∫ 𝑓(𝑦)𝑒𝑖(𝑡.𝑦)

 

𝑅𝑑

∏
𝑒−𝑖𝑎𝑗𝑡𝑗 − 𝑒−𝑖𝑏𝑗𝑡𝑗

𝑖𝑡𝑗

𝑑

𝑗=1

 

𝑅𝑑

𝑑𝑦𝑒−𝜀|𝑡|2
𝑑𝑡 

Note: Each 𝑒
−𝑖𝑎𝑗𝑡𝑗−𝑒

−𝑖𝑏𝑗𝑡𝑗

𝑖𝑡𝑗
 is bounded for the same reasons as bsfore, so we have the product of 

bounded things times a thing which integrates to 1 in the inner dy integral, so that’s bounded. Now in 

total we have a bounded thing times the integral of 𝑒−𝜀|𝑡|2
, which is finite, so we have the conditions to 

swap the integrals around. 

Since 𝑒−𝜀|𝑡|2
is just the product of 𝑒−𝜀(𝑡𝑗

2), we can simplify 𝐼𝜀  as follows: 

=
1

(2𝜋)𝑑
∫ 𝑓(𝑦) ∫ 𝑒𝑖(𝑡.𝑦)

 

𝑅𝑑

∏
𝑒−𝑖𝑎𝑗𝑡𝑗 − 𝑒−𝑖𝑏𝑗𝑡𝑗

𝑖𝑡𝑗

𝑑

𝑗=1

 

𝑅𝑑

𝑒−𝜀|𝑡|2
𝑑𝑡𝑑𝑦 

= ∫ 𝑓(𝑦) ∫ ∏
1

2𝜋
𝑒𝑖(𝑡𝑗𝑦𝑗)

𝑒−𝑖𝑎𝑗𝑡𝑗 − 𝑒−𝑖𝑏𝑗𝑡𝑗

𝑖𝑡𝑗

𝑑

𝑗=1

 

𝑅𝑑

 

𝑅𝑑

𝑒−𝜀(𝑡𝑗)2
𝑑𝑡𝑑𝑦 

We know what each term looks like from earlier, so we end up with 

= ∫ 𝑓(𝑦) ∫ ∏
1

2

𝑑

𝑗=1

 

𝑅𝑑

 

𝑅𝑑

(erf (
𝑦𝑗 − 𝑎𝑗

2√𝜀
) − erf (

𝑦𝑗 − 𝑏𝑗

2√𝜀
)) 𝑑𝑡𝑑𝑦 

Which in the limit vanishes exactly when we are outside the (a,b) high dimensional rectangle and goes 
to 1 when we are inside it, for the same reasons – Each term goes to 1 or 0 and the product is 1 only 
when all terms go to 1. 



Now at last we have, because of dominated convergence again, the same result for random vectors: 
the characteristic function determines the distribution. 

We also need the result for random vectors that convergence in cf implies convergence in distribution. 

To do this, we will define yet another function. Let 𝐿𝜀(𝑡) ≔
𝑒−𝜀|𝑡|2

2𝜋
∏

𝑒
−𝑖𝑎𝑗𝑡𝑗−𝑒

−𝑖𝑏𝑗𝑡𝑗

𝑖𝑡𝑗

𝑑
𝑗=1 , then 𝐼𝜀 =

∫ 𝜙(𝑡)𝐿𝜀(𝑡)𝑑𝑡
 

𝑅𝑑 . With exactly the same proof as the univariate case, all the hypotheses for the 

dominated convergence theorem apply, so the limit of ∫ 𝜙𝑛(𝑡)𝐿𝜀(𝑡)𝑑𝑡
∞

−∞
 is indeed 𝐼𝜀. Therefore, letting 

𝜀 approach 0, we have that the probability our distribution lands between a and b approaches that 
probability for a pdf with cf 𝜙 if the cf’s converge to 𝜙. So done. 

The proof of the main theorem is very short now. 

Suppose we have a vector t, and 𝑍𝑛 ≔ 𝑡. 𝑌𝑛 and 𝑍 ≔ 𝑡. 𝑌. Suppose also that 𝑍𝑛  converges in 
distribution to 𝑍. Then we will show that 𝑌𝑛 converges in distribution to 𝑌. 𝜙𝑌𝑛

(𝑡) = 𝐸(𝑒𝑖(𝑡.𝑌𝑛)) =

𝐸(𝑒𝑖∗1∗(𝑍𝑛)) = 𝜙𝑍𝑛
(1). Since Z converges in distribution, we have that as n goes to infinity 𝜙𝑌𝑛

(𝑡) =

𝜙𝑍𝑛
(1) → 𝜙𝑍(1) = 𝐸(𝑒𝑖𝑍) = 𝐸(𝑒𝑖(𝑡.𝑌)) = 𝜙𝑌(𝑡). This is true for every fixed vector t, so since we know 

that convergence in characteristic functions implies convergence in distribution even for vectors, the 
result follows. 


