This lemma was used in my old clunky proof of chi squared tests from level 6 so it has be moved to
this section.

Theorem: for a fixed vector a, if a sequence of random vectors Y,, converges in distribution to a
random vector Y, then a.Y,, converges in distribution to a.Y, and that if a. Y,, converges in distribution
to a.Y for all vectors a, then Y,, converges in distribution to Y. The first part is because a linear
combination of the components of the Y,, converges in distribution to the linear combination of the
components of Y since Y,, converges to Y. The other direction is the hard part: Note thatitis not as
obvious as it seems: Just because each component converges to the right thing does not mean the
whole thing does, since the components are notindependent in general.

In fact, by having a distribution Y and setting the sequence tobe V, Y, Y,... the above theorem actually
says that every probability distribution in higher dimensional space is uniquely determined by its 1D
projections, or that scanning something in every direction determines its structure, which is really
interesting. (This is for distributions which are part discrete part continuous — which is more than what
we need —since our characteristic function theory only works for those types of distributions)

Levels recommended for proof: 6 (A good understanding of all the hard stuff in level 6 stats and
technical results is expected)

Proof:
Lemma: Convergence in distribution implies pointwise convergence of characteristic function
Proof:

Suppose we have a sequence of probability distributions X,, converging in distribution to a probability
distribution X. For any €>0, we can pick a point on the cdf of X with a value strictly less than 2, and
another point with a value strictly greater than 1 — % This is always possible since in the extremes, the

cdf approaches 0 and 1, so we can find points as close as we wantto 0 and 1. Let M be at least the
maximum absolute value of these points we’ve picked and ensure we pick M such that at M and -M,
the cdf of X is continuous and does not jump. Then P(|X| > M) < €. But since X,, converges in
distribution to X, the cdfs converge pointwise, so at -M and M where the cdf of X is within % of0and 1

respectively, by definition of convergence we can find an N such that for all X,, with n>N, the cdf of X,
at M and -M get as close as we want to the cdf of X at M and -M. Specifically, make it so close that it is

still within % of 0 and 1 respectively. Then we have shown that for any £>0 there exists M and N such
thatif n>N then P(|]X,| > M) < .

Now for any €>0 pick M and N; such thatif n > N; we have that P(| X, | > M) < i. Now let 15 be the

indicator function of the set S, ie the function that returns 1 for points inside the set Sand 0
everywhere else. Then E(e't*n) — E (e!tX)

= E(e™n 1y, 1am + €1y 15m) — E(e"™ 1ixim + ¥ 1 1x50)

We simply have that the expectation overall is the expectation when inside a set plus the expectation
when outside that set, this is obvious. We split this even further to get the following:

= E(e™ 15, 1am) + E(" 1y, 15m) — E(e"™ Lixjem) — E(e" 1 1x150)



Now, recall that we have the triangle inequality for both real numbers and integrals. Since
expectations are actually defined in terms of integrals, we do have the inequality |E(x)|<E(|x|) directly
from the integral inequality. So, we have:

|E(eitXn) _ E(eitx)l
= |E(e™ ™ 1ix,1em) + E(e"* 1y, 15m) — E(e"* Ljxiem) — E(e"* Lixjom)|
By what we just did
< |E(e™ 1k 1em) — E(e* Lixiam)| + [E(e™ L 1mm)| + [E(e"¥ Lixi5m)|
By the normal triangle inequality

< [E(e™ 1 x,1em) — E(e™ Vi) | + E(1€™* |11, 150) + E (1€ [11x1501)

By the triangle inequality for expectations. However, |e!**n| = |e!*X| = 1 so since this is only when

|X,,| > M, we have that
[E(en) = B(e)] < [E(™n 113, 1am) = E (e jens)| + 5

Which helps a lot, since the goal is to make this term less than a full epsilon so we have that the
characteristic functions get as close together as we want so we have the desired result.

Now, e‘t* on [-M,M] is a continuous function on a closed bounded interval so it is uniformly
continuous. Therefore we can find a § small enough that on any interval of length at most &, e’** is
within a ball in the complex plane of diameter i, which we can do by considering real and imaginary
£
42’
square within the circle that we need. Since this § works everywhere by uniform continuity, we can

parts separately and making sure they are in an interval of length ensuring the whole thingisin a

find a finite partition —M = q, < a; < - < a,, = M where the distance between each x is at most 6.
We take care to make sure that each a is a point where the cdf is continuous, and this will have the

property thatif g(x) := e'**, then for any x and y between a;_; and a; we have that [g(x) — g(y)| < Z.

In particular, forany §; with a;_; < §; < a, which I will now pick arbitrarily for each interval j, we have
that the difference between ¢; := g(§;) and g(anything else in that interval) is bounded above in

absolute value by Z. I will now define the simple function s(x) := Z}”:l le(aj_]_,aj]’ then since [¢j| is 1
since itis equal to et/ we have that it is always the case that |g(x) — s(x)| < i. Now lets work on
the |E(e™™n1x 1<) — E (€1 x1<m )| term which we hope to bound by%’g in order to be done: This

termis equal to

ff/IMg(x)fn(x)dx - fing(x)f(x)dx| because of the definition of expected value in

terms of integrals and the definition of g(x) and the fact that the indicator function makes this be on
the interval [-M,M]. Here f,, is the pdf of X,, and f is the pdf of x. | can write the term as

M M M M
f (G = )@ fp()dx - f (g — ) f(X)dx + f SO0, (X)dx - f SGOf (X)dx

Then both versions of the triangle inequality mean that this is

f SGO fu () dx — j sGOf () dx
M M

<[ - 9@iheax+ [ 1G9 -D0Ir@dx+
M M



Since fis positive and real so we can pull it out of the absolute value (this also justifies the inequality
for expectations in general). Now using the bounds we got earlier we can simplify this even further:

M

< f_ efn(x)dx + f_sz(x)dx + Ms(x)f(x)dx

ul

f_ZS(X)fn(X)dx - f

M

< Zf_an(x)dx + Zf_Mf(x)dx + Ms(x)f(x)dx

f_ A;S(x)fn(x)dx - f

M

< E+ s(x)f(x)dx
2 M

E;S(X)fn(x)dx - f

Since those integrals cannot be greater than 1. So we just have to make sure that

|f_MMs(x)fn(x)dx — 2,50 f(x)dx| <

£

4

Then we’re done, since we will have that the characteristic function converges for every fixed t and
therefore converges pointwise.

To do this, we note that since s is equal to cjon each interval (aj_l, aj), we have that the termin
question can be written as

m (1]' m aj
Z f Cifn(x)dx — f ¢if (x)dx
j=1 aj_1 j=1 aj_1

But the integral of f and f,, is the cdf, which I’ll call F and F, respecively, so the term becomes

D GlR(@) ~ (g1 = ) 6lF (@) = F(a)]
j=1 j=1

) Z 6 |(Fula)) = Fa(a-2)) = (F(a) - F(a-0) )]

< Z |cj [(Fn(aj) - Fn(aj—l)) - (F(aj) - F(af—l))]

j=1

By the triangle inequality

] Z [[(Fa(a) = Bule=1)) = (F(a) = F(g-0) )|

Since |¢;| = 1

< Z“Fn(aj) — F(a))| + |Fa(aj-1) = F(a;-1)]]

By the triangle inequality.



Now, since each a; is a point where F is continuous, it means F, converges to F there. So if n is large
enough Fn(aj) will be within % of F(aj) if we pick n > Nj. Since there are finitely many (m, the number

of intervals in our partition) N;’s, simply pick the largest one, then we have that n is large enough so
that our sum s

m

m
8m 8m Z -
=1 =

J

So done (with the lemma).

Lemma 2: We have the other direction (Characteristic functions determine the distribution and
convergence in cfimplies convergence in distirbution) for random vectors.

Proof:

Arandom vector is defined by a probability density function in R¥, ie sets of k real numbers. We define
the cf of a random vector Y to be a function that takes in a vector t and outputs E(e'*¥)). If the space
is d dimensional, we define

[ ;f & (t)e_gltlzﬁe—iajtj — e~ ibjt;j it
N 75 L PR L it;
Where that big scary looking thing just means product.
la]t] —lbjtj ,
(zn)d f f f()el 1_[ dye~¢Itdt
Note: Each M is bounded for the same reasons as bsfore, so we have the product of

i
bounded things times a thing which integrates to 1 in the inner dy integral, so that’s bounded. Now in

—elt|?

total we have a bounded thing times the integral of e , Which is finite, so we have the conditions to

swap the integrals around.

—S(tjz

Since e~¢ltPis just the product of e ), we can simplify I, as follows:

la]t] bt

ia]-t]- e—ibjt

d
1 . - — J
= j f(y)J H_el(tj:Vj) € - e—E(tj)zdtdy
Rd Rd it 2T ltj

We know what each term looks like from earlier, so we end up with

00 LI T

Which in the limit vanishes exactly when we are outside the (a,b) high dimensional rectangle and goes
to 1 when we are inside it, for the same reasons — Each term goes to 1 or 0 and the productis 1 only

when allterms goto 1.



Now at last we have, because of dominated convergence again, the same result for random vectors:
the characteristic function determines the distribution.

We also need the result for random vectors that convergence in cf implies convergence in distribution.

e_gltlz —iajtj_e—ib't'

d e
ML, ——=—— thenl, =

ltj

To do this, we will define yet another function. Let L.(t) = -

fRd ¢ (t)L.(t)dt. With exactly the same proof as the univariate case, all the hypotheses for the
dominated convergence theorem apply, so the limit of ffooo ¢, ()L (t)dt is indeed I,. Therefore, letting

€ approach 0, we have that the probability our distribution lands between a and b approaches that
probability for a pdf with cf ¢ if the cf’s converge to ¢. So done.

The proof of the main theorem is very short now.

Suppose we have avectort,and Z,, :=t.Y,, and Z = t.Y. Suppose also that Z,, converges in
distribution to Z. Then we will show that Y;, converges in distribution to Y. ¢y, (t) = E(e'®)) =
E(e"1*#)) = ¢, (1). Since Z converges in distribution, we have that as n goes to infinity ¢y, (t) =
$z,(1) > ¢z (1) = E(e?) = E(e'™") = ¢y (¢). This is true for every fixed vector t, so since we know
that convergence in characteristic functions implies convergence in distribution even for vectors, the
result follows.



